Quorum Sensing and Virulence of Pseudomonas aeruginosa during Lung Infection of Cystic Fibrosis Patients
نویسندگان
چکیده
Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity (alginate overproduction) and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS). To elucidate the dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to be lost was the one encoded by las system 12 years (median value) after the onset of the lung infection with subsequent loss of the rhl encoded system after 17 years (median value) shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR. Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.
منابع مشابه
RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. ...
متن کاملPseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis.
Individuals with cystic fibrosis (CF) are commonly colonized with Pseudomonas aeruginosa. The chronic infections caused by P. aeruginosa are punctuated by acute exacerbations of the lung disease, which lead to significant morbidity and mortality. As regulators of virulence determinants, P. aeruginosa quorum-sensing systems may be active in the chronic lung infections associated with CF. We have...
متن کاملAnaerobiosis of Pseudomonas aeruginosa: Implications for Treatments of Airway Infection
Pseudomonas aeruginosa, as an opportunistic pathogen, establishes a chronic infection in the respiratory track of patients suffering from pneumonia and bronchiectasis, including cystic fibrosis. Biofilm formation inside the oversecreted mucus layer lining the patient airway and production of virulence factors, a process controlled by quorum sensing, are considered to be the major virulence dete...
متن کاملIn vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients.
One of the hallmarks of Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients is very-high-cell-density (HCD) replication in the lung, allowing this bacterium to induce virulence controlled by the quorum-sensing systems. However, the nutrient sources sustaining HCD replication in this chronic infection are largely unknown. Here, we performed microarray studies of P. aeruginosa direc...
متن کاملMexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-heptylquinoline)
Bacterial cells have evolved the capacity to communicate between each other via small diffusible chemical signals termed autoinducers. Pseudomonas aeruginosa is an opportunistic pathogen involved, among others, in cystic fibrosis complications. Virulence of P. aeruginosa relies on its ability to produce a number of autoinducers, including 4-hydroxy-2-alkylquinolines (HAQ). In a cell density-dep...
متن کامل